RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2016
21 июля 2016 г. 17:15, г. Дубна, дом отдыха «Ратмино»
 


Знаменитые многогранники. Занятие 1

Г. Ю. Панина
Видеозаписи:
Flash Video 513.0 Mb
Flash Video 3,057.9 Mb
MP4 513.0 Mb

Количество просмотров:
Эта страница:228
Видеофайлы:109

Г. Ю. Панина


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Некоторые комбинаторные схемы дают на выходе интересные выпуклые многогранники, имеющие отношение много к чему из современной математики.
Совсем простой пример: возьмем 6 точек, помеченных всеми возможными перестановками множества {1,2,3}. Соединим ребрами точки, метки которых отличаются перестановкой соседних чисел. Например, точки (1,3,2) и (3,1,2) будут соединены ребром. На полученный граф нужно смотреть как на (плоский выпуклый) шестиугольник. Аналогичные действия с множеством {1,2,3,4} выдадут усеченный октаэдр. Показать вручную, что из перестановок множества {1,2,3,4,5} получится некоторый четырехмерный многогранник – уже содержательная задача.

Программа курса
  • Перестановки дают пермутоэдр (перестановочный многогранник). Где он может пригодиться? (Конфигурационное пространство шарнирного многоугольника.)
  • Скобочные последовательности дают ассоциэдр (многогранник Сташефа). Зачем он нужен? («Чудесная» компактификация де Кончини–Прочезе.)
  • Вторичный многогранник (secondary polytope Гельфанда–Капранова–Зелевинского) связан с совершенно иной комбинаторной схемой, и при этом обобщает предыдущие примеры.

Для понимания курса потребуются лишь базовые представления из линейной алгебры.

Website: http://www.mccme.ru/dubna/2016/courses/panina.html

Список литературы
  1. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhauser, Boston, MA, 1994

Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017