RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Международная конференция «Categorical and analytic invariants in Algebraic geometry 3»
16 сентября 2016 г. 12:20, г. Москва, НИУ «Высшая школа экономики»
 


Noncommutative Hirzebruch surfaces

Sh. Okawa

Osaka University
Видеозаписи:
MP4 1,859.7 Mb
MP4 471.7 Mb

Количество просмотров:
Эта страница:83
Видеофайлы:80


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: By definition, Hirzebruch surface is a $\mathbb{P}^1$ bundle over $\mathbb{P}^1$. Isomorphism classes of such surfaces are classified by non-negative integers d, and those with the same parity are connected by unobstructed deformations.
Flat deformations of the abelian category of coherent sheaves on Hirzebruch surface, or noncommutative deformations, have been studied by several people. Contrary to the case of del Pezzo surfaces, nc deformations of the $d$-th Hirzebruch surface are obstructed if $d > 3$. On the other hand, Michel Van den Bergh introduced the notion of sheaf $\mathbb{Z}$-algebras and proved that any noncommutative deformation of a Hirzebruch surface over a complete Noetherian local ring is obtained from a sheaf $\mathbb{Z}$-algebra associated to a locally sheaf bimodule of rank 2 on the projective line. In this talk, I will give some introduction to this subject and explain our result on the geometric classification of locally free sheaf bimodules. I will also explain some results from the point of view of derived categories, including a version of McKay correspondence. My talk will be based on a joint work in progress with Izuru Mori and Kazushi Ueda.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017