RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Матсборник-150: алгебра, геометрия, анализ
8 ноября 2016 г. 15:00, г. Москва, МИАН, ул. Губкина, д. 8, конференц-зал, 9 этаж
 


Полиэдральные произведения, прямоугольные группы Коксетера и гиперболические многообразия

Т. Е. Панов
Видеозаписи:
MP4 1,866.5 Mb
MP4 473.4 Mb

Количество просмотров:
Эта страница:191
Видеофайлы:51

Т. Е. Панов
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Полиэдральное произведение представляет собой функториальную комбинаторно-топологическую конструкцию, сопоставляющую топологическое пространство $(X,A)^K$ паре топологических пространств $(X,A)$ и симплициальному комплексу $K$. Аналогичная конструкция имеется и в категории групп и называется граф-произведением. Частным случаем граф-произведений являются прямоугольные группы Коксетера, играющие важную роль в геометрической теории групп. Особый интерес представляют геометрические прямоугольные группы Коксетера, порождённые отражениями в гипергранях многогранников, реализуемых в пространстве Лобачевского с прямыми двугранными углами. Каждому такому многограннику сопоставляется семейство асферических гиперболических многообразий, фундаментальные группы которых суть коммутанты прямоугольных групп Коксетера или их конечных расширений. Используя результаты о топологии полиэдральных произведений, мы описываем строение коммутантов прямоугольных групп Коксетера, а затем применяем эти результаты для классификации гиперболических многообразий с точностью до диффеоморфизма.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017