RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Конференция по теории чисел и приложениям в честь 80-летия А. А. Карацубы
25 мая 2017 г. 12:45, г. Москва, Математический институт им. В. А. Стеклова
 


Universality for $L$ -functions from the Selberg class

[Универсальность $L$ -функций из класса Сельберга]

Р. Мацайтенеab

a Шяуляйский университет, г. Шяуляй
b Шауляйский Государственный колледж
Видеозаписи:
MP4 619.5 Mb
MP4 157.2 Mb

Количество просмотров:
Эта страница:119
Видеофайлы:40

R. Macaitienė
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Универсальность дзета- и $L$ -функций – одно из наиболее удивительных явлений в аналитической теории чисел. Оно состоит, грубо говоря, в том, что всякая аналитическая функция может быть приближена с любой заданной точностью “сдвигами” дзета- и $L$ -функций, причём равномерно по компактным подмножествам определённой области.
В докладе мы будем рассматривать, главным образом, универсальность $L$ -функций из класса Сельберга [1], который является в настоящее время одним из наиболее активно изучаемых объектов аналитической теории чисел. Нами будет представлено два типа результатов – непрерывная и дискретная универсальность, отвечающие, соответственно, случаям, когда параметры сдвига принимают произвольные вещественные значения и значения из некоторого дискретного множества (скажем, из арифметической прогрессии). Именно, мы обсудим результаты, полученные в работах [2], [3] и [4].
[1] A. Selberg, Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), E. Bombieri et al. (Eds.). Univ. Salerno. Salerno, 1992. P. 367 – 385.
[2] H. Nagoshi, J. Steuding, Universality for $L$-functions in the Selberg class. Lith. Math. J. 50:3 (2010). P. 393 – 411.
[3] R. Macaitienė, Mixed joint universality for $L$-functions from Selberg's class and periodic Hurwitz zeta-functions. Chebysh. Sb., 16:1 (2015). P. 219 – 231.
[4] A. Laurinčikas, R. Macaitienė, Discrete universality in the Selberg class. Proceedings of the Steklov Institute of Mathematics. 2017. V. 299. (to appear).

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017