RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






L-Functions and Algebraic Varieties. A conference in memory of Alexey Zykin
8 февраля 2018 г. 12:30–13:30, Moscow, Moscow Independent University, 11 Bolshoi Vlassievsky per.
 


Harmonic analysis on discrete groups and analytic properties of zeta-functions of algebraic varieties

A. N. Parshin
Видеозаписи:
MP4 2,363.0 Mb
MP4 537.3 Mb

Количество просмотров:
Эта страница:126
Видеофайлы:49

А. Н. Паршин


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Let X be an algebraic variety defined over a finite field and let us consider its zeta-function defined by the Euler product. The Grothendieck cohomological method solves two main problems: analytic continuation of zeta-function of X to the whole s-plane and existence of a functional equation. If X is an algebraic curve then the same problems can be solved by the adelic method developed by Tate and Iwasawa. In general, zeta-function of X can be written as a sum over the discrete group of 0-cycles on X. In the talk, we show how to develop a harmonic analysis on this group for curves and apply it to study the zeta-functions. Next, we describe what can be done for algebraic surfaces along these lines.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020