RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2010
20 июля 2010 г. 17:00, г. Дубна
 


Экстремальные задачи комбинаторики и теории геометрических графов. Лекция 1

А. М. Райгородский
Видеозаписи:
Windows Media 515.5 Mb
Flash Video 863.1 Mb
MP4 863.1 Mb

Количество просмотров:
Эта страница:1508
Видеофайлы:757

А. М. Райгородский


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Лекции будут посвящены одному из самых ярких разделов современной комбинаторики — теории геометрических графов. Основным объектом нашего исследования будет так называемый дистанционный граф (он же граф расстояний), вершины которого — это точки плоскости (или пространства более высокой размерности), а ребра — отрезки заданной длины. Этот объект весьма труден для исследования, и на многие — казалось бы, простые — вопросы о его свойствах нет окончательных ответов. Нас будут в первую очередь интересовать «экстремальные» характеристики графов расстояний. Среди них хроматическое число — минимальное количество цветов, в которые можно так покрасить вершины графа, чтобы вершины, соединенные ребром, были разноцветными; обхват — длина кратчайшего цикла в графе. Для отыскания этих характеристик мы познакомимся с основами линейно-алгебраического и вероятностного методов в комбинаторике. Кроме того, мы пронаблюдаем интересные связи между задачами комбинаторной геометрии и теории кодирования.
Бо́льшая часть материала будет доступна старшеклассникам. Приблизительная структура лекций следующая.
Лекция 1. Определение дистанционного графа. Простейшие свойства: число ребер в случае плоскости и пространства, хроматические числа в маленьких размерностях и др. Обхват дистанционного графа. Клики (полные подграфы) в дистанционных графах.
Лекция 2. Задача о наибольшей мощности совокупности $M=\{M_1,…,M_s\}$ подмножеств конечного множества с запретами на величины $|M_i\cap M_j|$. Линейно-алгебраический метод. Хроматические числа дистанционных графов в растущей размерности.
Лекция 3. Некоторые идеи теории кодирования. Построение дистанционных графов, не содержащих клик заданного размера и имеющих большое хроматическое число. Большое хроматическое число и большой обхват.
Лекция 4. Вероятностный метод. Уточнение результатов третьей лекции.
Цикл докладов

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017