RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2010
20 июля 2010 г. 17:00, г. Дубна
 


Решётки и упаковки шаров в многомерных пространствах. Лекция 1

В. А. Клепцын
Видеозаписи:
Windows Media 505.6 Mb
Flash Video 845.9 Mb
MP4 845.9 Mb

Количество просмотров:
Эта страница:779
Видеофайлы:334

В. А. Клепцын


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Как плотнее всего расположить непересекающиеся одинаковые круги на плоскости? Ответ известен — разместив их центры в вершинах треугольной решётки. В трёхмерном пространстве ответ хоть и считается известным («пирамида ядер»), но до сих пор не доказан.
Достаточно часто в этой или в похожих задачах (скажем, в задаче о контактном числе) ответом (или предполагаемым ответом) оказывается расположение шаров в вершинах, образующих решётку. Поэтому исследование решёток в многомерных пространствах оказывается очень естественным шагом — и приводит к исключительно красивой теории.
Программа курса:
1. Решётки в многомерных пространствах, «сильная дырявость» кубической решётки. Характеристики решётки: контактное число, плотность упаковки. Связь контактного числа с передачей информации по зашумлённому каналу.
2. Конкретные примеры: пирамида ядер в $\mathbf R^3$, кубическая, cfc и ccc решётки. Совпадение пирамиды ядер с cfc. Шахматная решётка в $\mathbf R^4$.
3. Свойства решёток: целость, чётность, унимодулярность. Двойственные решётки, самодвойственность. Примеры: решётки $\mathbf D_n$, $\boldsymbol\Gamma_n$.
4. Коды, их свойства. Порождающая матрица, проверочная матрица. Решётки, получающиеся из кодов, связь свойств. Код Хэмминга, пополненный $(8,4,4)$-код, решётка $\mathbf E_8$ (она же решётка Коркина–Золотарёва, она же решётка Витта).
5. Корни, классификация решёток, порождённых корнями. Код Голея и решётка Лича.
6. Производящий многочлен кода, его поведение при переходе к двойственному коду. Теорема о делимости на 8 размерности дважды чётного самодвойственного кода. Немного теории представлений: производящий многочлен как многочлен от стандартных.
7. Тета-функция чётной решётки, переход к двойственной решётке. Модулярные формы, модулярность тета-функции чётной унимодулярной решётки. Теорема о делимости на 8 размерности чётной унимодулярной решётки.
8. Ещё немного о модулярных формах и связи с комплексным анализом: функция Вейерштрасса, модулярные инварианты, вложение эллиптической кривой в $\mathbf{CP}^2$. Как устроено пространство $\mathbf{E}_{2n}$ модулярных форм?

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017