RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2008
24 июля 2008 г. 12:45, г. Дубна
 


Узлы и косы. Второе занятие (семинар)

А. Б. Сосинский
Видеозаписи:
Real Video 215.6 Mb
Windows Media 227.9 Mb
Flash Video 359.4 Mb
MP4 359.4 Mb

Количество просмотров:
Эта страница:1282
Видеофайлы:719

А. Б. Сосинский


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Первое занятие (лекция). Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея (доказательство его существование останется в виде (серьезной!) задачи).
Второе занятие (семинар). Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
Третье занятие (семинар). Его содержание будет зависеть от того, насколько мы продвинемся на предыдущих занятиях и (отчасти) от пожеланий слушателей. Либо мы закончим дальнейшим изучением свойств полинома Джонса, либо займемся теорией кос, либо будет рассказана аксиоматика инвариантов Васильева.
Лекция и занятия будут доступны и студентам, и школьникам. Необходимые формальные топологические определения будут сформулированы, но доказательство части вспомогательных тополого-геометрических лемм будут проведены неформально (но я надеюсь — интутивно понятно).
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017