RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Конференция по комплексному анализу и математической физике, посвященная 70-летию А. Г. Сергеева
22 марта 2019 г. 17:30–18:00, г. Москва, МИАН, ул. Губкина, д. 8, конференц-зал
 


Construction of transmutation operators and application to direct and inverse spectral problem

Vladislav Kravchenko

Southern Federal University, Rostov-on-Don
Видеозаписи:
MP4 961.9 Mb
MP4 436.9 Mb

Количество просмотров:
Эта страница:60
Видеофайлы:77

Vladislav Kravchenko
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: A new approach for solving the classical direct and inverse Sturm-Liouville problems on finite and infinite intervals is presented. It is based on the Gel'fand-Levitan-Marchenko integral equations and recent results on the functional series representations for the transmutation (transformation) operator kernels [1-5]. New representations of solutions to Sturm-Liouville equation are obtained enjoying the following feature important for practical applications. Partial sums of the series admit estimates independent of the real part of the square root of the spectral parameter which makes it especially convenient for the approximate solution of spectral problems. Numerical methods based on the proposed approach for solving direct problems allow one to compute large sets of eigendata with a nondeteriorating accuracy. Solution of the inverse problems reduces directly to a system of linear algebraic equations. In the talk some numerical illustrations will be presented.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019