RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2010
25 июля 2010 г. 12:45, г. Дубна
 


Прямые на кубической поверхности

А. Г. Кузнецов
Видеозаписи:
Windows Media 542.0 Mb
Flash Video 907.5 Mb
MP4 907.5 Mb

Количество просмотров:
Эта страница:831
Видеофайлы:453

А. Г. Кузнецов


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Цель данного курса — познакомить (насколько это возможно) слушателей с алгебраической геометрией на примере замечательной классической задачи.
Основной предмет алгебраической геометрии — изучение алгебраических многообразий (то есть многообразий, задаваемых полиномиальными уравнениями). Важный класс таких многообразий — проективные многообразия, наиболее простыми из которых являются гиперповерхности.
Главный герой нашего курса — гиперповерхность в трехмерном проективном пространстве, задаваемая однородным многочленом третьей степени (от четырех переменных), а вопрос, которым мы зададимся — как описать множество прямых, лежащих на этой гиперповерхности. Оказывается, для ответа удобно описать нашу гиперповерхность совершенно иным способом — как раздутие проективной плоскости в шести точках. При этом оказывается, что прямых конечное число (а именно 27), и они образуют замечательно симметричную конфигурацию, связанную с системой корней E6.
Основное требование к слушателям — знакомство с основами линейной алгебры (и просто алгебры). Все остальное я надеюсь объяснить

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018