Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2019
23 июля 2019 г. 15:30–16:45, г. Дубна, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Графы, критическая группа и многочлен Татта, занятие 2

И. Жарков
Видеозаписи:
MP4 2,272.7 Mb
MP4 2,009.1 Mb

Количество просмотров:
Эта страница:120
Видеофайлы:37


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Мы начнем с классической банковской игры в рассыпание фишек (chip firing), также извесной как песочные модели; им два года назад был посвящён курс Никиты Калинина. В начальный момент на каждой вершине находится неотрицательное целое число фишек. На каждом ходу одна из вершин отдает по одной фишке каждому из своих соседей (а фишки, упавшие в некоторые выделенные вершины, пропадают насовсем), и этот процесс продолжается до тех пор, пока есть такие «богатые» вершины, которые можно рассыпать. Когда рассыпать уже нечего, получившееся состояние называется стабильным. Можно переходить от одного стабильного состояния к другому, сначала добавляя фишки, а потом рассыпая их. Но в некоторые состояния (например, в пустое) так вернуться нельзя. Те состояния, в которые можно вернуться откуда угодно, называются критическими. Оказывается, существуют другие объекты на графах, находящиеся во взаимно-однозначном соответствии с критическими конфигурациями. Эти объекты, а также всевозможные биекции между ними, и будут основной темой наших занятий.

Website: https://mccme.ru/dubna/2019/courses/zharkov.html
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021