Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по математическим методам квантовых технологий
2 ноября 2020 г. 16:30–17:15, г. Москва, онлайн
 


О машинном обучении в задаче оптимального быстродействия для открытой двухуровневой квантовой системы с когерентным и некогерентным управлениями

О. В. Моржин

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 231.1 Mb

Количество просмотров:
Эта страница:95
Видеофайлы:21


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Рассматривается уравнение Горини–Коссаковского–Сударшана–Линдблада в случае матрицы плотности второго порядка, зависящее одновременно от когерентного управления (входит в гамильтониан) и некогерентного управления (входит в диссипатор), и класс задач оптимального быстродействия для этого уравнения, где накладываются различные ограничения на управления. Для множества начальных матриц плотности, представляющих чистые состояния, и заданной целевой матрицы плотности, представляющей смешанное состояние, численно найдены решения соответствующих задач оптимального быстродействия, что использовано в формулировке задачи многомерной регрессии по построению субоптимальных финальных времен и управлений для произвольных начальных матриц плотности, тоже представляющих чистые состояния. Сформулирован алгоритм, комбинирующий метод k ближайших соседей и обучение нейронной сети. Приводятся результаты численных экспериментов при различных мощностях множеств обучающих данных. Доклад основан на статье [O.V. Morzhin, A.N. Pechen, “Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system”, Lobachevskii J. Math., 41:12, 2353–2369 (2020) (In press)].

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021