Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Многомерные вычеты и тропическая геометрия
17 июня 2021 г. 18:00–19:00, Пленарные доклады, г. Сочи
 


Higher convexity of tropical objects

F. Sottile

Texas A&M University

Количество просмотров:
Эта страница:22

Аннотация: Gromov generalized the notion of convexity for open subsets of $R^n$ with hypersurface boundary, defining $k$-convexity, or higher convexity and Henriques applied the same notion to complements of amoebas. He conjectured that the complement of an amoeba of a variety of codimension $k+1$ is $k$-convex. I will discuss work with Mounir Nisse in which we study the higher convexity of complements of coamoebas and of tropical varieties, proving Henriques' conjecture for coamoebas and establishing a form of Henriques' conjecture for tropical varieties in some cases.

Язык доклада: английский

Website: https://us02web.zoom.us/j/2162766238?pwd=TTBraGwvQ3Z3dWVpK3RCSFNMcWNNZz09

* ID: 216 276 6238, password: residue

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021