Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






7-й Международный семинар «Комбинаторика пространств модулей, кластерные алгебры и топологическая рекурсия» (MoSCATR VII)
1 июня 2021 г. 15:00–16:00, г. Москва, ВШЭ, МИАН, Сколтех
 


Generalised Kontsevich graphs, r-spin intersection numbers and topological recursion

E. Garcia Faildeab

a Institut de Physique Théorique
b Institut des Hautes Études Scientifiques
Видеозаписи:
MP4 387.1 Mb

Количество просмотров:
Эта страница:32
Видеофайлы:4


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: In 1990, Witten formulated his celebrated conjecture that predicts that the generating series of intersection numbers of psi-classes is a tau function of the KdV hierarchy. Kontsevich gave the first proof of this conjecture making use of a cell decomposition of a combinatorial model of the moduli space of curves by means of certain ribbon graphs which are Feynman graphs of a cubic hermitian matrix model with an external field. Together with Raphaël Belliard, Séverin Charbonnier and Bertrand Eynard, we studied certain generalisations of these graphs and showed that they satisfy a Tutte recursion. This implies a combinatorial interpretation of universal expressions that we transform into loop equations for a large class of spectral curves. I will show how we arrived to the topological recursion statement for this model and how we related a particular instance of it to intersection numbers with Witten’s r-spin class, deducing also that r-spin intersection numbers can be computed by higher topological recursion. I will finish with comments on further consequences of our work that we would like to explore in the future.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021