Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Adian 90: Conference on Mathematical Logic, Algebra and Computation"
5 июля 2021 г. 17:00–17:45, Математический институт им.В.А.Стеклова РАН (г. Москва) и online-трансляция через Zoom
 


Группы с n-кручением, их расширения и эндоморфизмы

В. С. Атабекян

Ереванский Государственный Университет, Армения
Видеозаписи:
MP4 987.6 Mb

Количество просмотров:
Эта страница:51
Видеофайлы:21


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Группа $G$ с множеством порождающих $X$ называется группой с $n$-кручением, если она имеет систему определяющих соотношений вида $R^n=1$, где $R$ пробегает множество всех слов в алфавите $X$, которые имеют конечный порядок в $G$. При нечетных $n\ge665$ для каждой $n$-крученой группы можно построить теорию, аналогично теории построенной в известной монографии С.И.Адяна, что позволяет $n$-крученые группы исследовать развитыми в ней методами. Получено, что $n$-периодическое произведение любого семейства $n$-крученых групп является $n$-крученой группой, любая $n$-крученая группа может быть задана с помощью некоторой независимой системы определяющих соотношений вида $B^n$, любая $m$-порожденная абелева группа $D$ может быть вложена в качестве центра в некоторую группу $A$ так, что фактор группа $A/D$ изоморфна заданной $n$-крученой группе с не менее чем $m$ независимыми определяющими соотношениями. Далее, центр любой $n$-крученой группы тривиален, группа автоморфизмов $Aut(End(F))$ канонически вложена в группу $Aut(Aut(F))$ для любой относительно свободной $n$-крученой группы $F$ и т.д.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021