RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Международный симпозиум «Arithmetic Days in Moscow»
17 июня 2011 г. 10:00, г. Москва, МИАН
 


A semi-stable case of the Shafarevich Conjecture

V. Abrashkin

Durham University
Видеозаписи:
Flash Video 405.9 Mb
Flash Video 2,467.2 Mb

Количество просмотров:
Эта страница:177
Видеофайлы:71

V. Abrashkin


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Suppose $F$ is the quotient field of the ring of Witt vectors with coefficients in an algebraically closed field $k$ of odd characteristic $p$. We construct an integral theory of $p$-adic semi-stable representations of the absolute Galois group of $F$ with Hodge–Tate weights from $[0,p)$. This modification of Breuil's theory results in the following application in the spirit of the Shafarevich Conjecture. If $Y$ is a projective algebraic variety over rational numbers with good reduction away from $3$ and semi-stable reduction modulo $3$, then for the Hodge numbers of the complexification $Y_C$ of $Y$ it holds $h^2(Y_C)=h^{1,1}(Y_C)$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017