RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2011
22 июля 2011 г. 12:45, г. Дубна
 


Десятая проблема Гильберта: что можно и что нельзя делать с диофантовыми уравнениями. Лекция 1

Ю. В. Матиясевич
Видеозаписи:
Flash Video 474.3 Mb
Flash Video 2,881.2 Mb
MP4 474.3 Mb

Количество просмотров:
Эта страница:1875
Видеофайлы:671

Ю. В. Матиясевич


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: В 1900 году великий немецкий математик Давид Гильберт сформулировал свои знаменитые Математические проблемы. В десятой из них он просил найти алгоритм для распознавания наличия решений у произвольных диофантовых уравнений. Семьдесят лет спустя было установлено, что такого алгоритма не существует.
Техника, развитая для доказательства этого, позволила получить ещё много интересных результатов, например, построить многочлен с целыми коэффициентами, множество всех положительных значений которого (принимаемых при произвольных целочисленных значениях переменных) есть в точности множество всех простых чисел.
Мини-курс будет состоять из трёх частей.
В первой обзорной лекции будет рассказано об истории 10-й проблемы Гильберта, даны необходимые определения и сформулированы полученные результаты.
На протяжении трех последующих лекций будет дано полное подробное доказательство промежуточного результата — невозможности алгорима для распознавания наличия решений у более сложных экспоненциально диофантовых уравнений.
Остающееся звено — переход от экспоненциально диофантовых уравнений к чисто диофантовым уравнениям — желающие смогут найти самостоятельно в ходе решения серии предложенных им теоретико-числовых задач. Если решивших будет достаточно много, можно будет организовать коллективное обсуждение завершающей фазы отрицательного решения 10-й проблемы Гильберта.
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017