RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Шестая международная конференция по дифференциальным и функционально-дифференциальным уравнениям DFDE-2011
18 августа 2011 г. 12:00, г. Москва
 


The solvability of differential equations

N. Dencker

Lund University, Lund, Sweden
Видеозаписи:
Flash Video 1,721.5 Mb
Flash Video 283.2 Mb
MP4 283.2 Mb

Количество просмотров:
Эта страница:262
Видеофайлы:101

N. Dencker


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: It was a great surprise when Hans Lewy in 1957 presented a non-vanishing complex vector field that is not locally solvable. Actually, the vector field is the tangential Cauchy–Riemann operator on the boundary of a strictly pseudoconvex domain. Hörmander proved in 1960 that almost all linear partial differential equations are not locally solvable, because the necessary bracket condition is non-generic. This also has consequences for the spectral instability of non-selfadjoint semiclassical operators and the solvability of the Cauchy problem for non-linear analytic vector fields.
Nirenberg and Treves formulated their famous conjecture in 1970: that condition ($\Psi$) is necessary and sufficient for the local solvability of differential equations of principal type. Principal type essentially means simple characteristics, and condition ($\Psi$) only involves the sign changes of the imaginary part of the highest order terms along the bicharacteristics of the real part.
The Nirenberg–Treves conjecture was finally proved in 2003. We shall present the background, the main results, and some generalizations to non-principal type equations and systems of differential equations.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017