Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2011
26 июля 2011 г. 15:30, г. Дубна
 


Пространства модулей кривых и инварианты Громова–Виттена. Лекция 1

А. Г. Кузнецов
Видеозаписи:
Flash Video 1,682.9 Mb
Flash Video 329.6 Mb
MP4 329.6 Mb

Количество просмотров:
Эта страница:1889
Видеофайлы:689

А. Г. Кузнецов


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Инварианты Громова–Виттена — это замечательный набор численных инвариантов алгебраического (и, более общо, симплектического) многообразия, обобщающих индексы пересечения когомологических классов. Они позволяют ввести на кольце когомологий новое, так называемое квантовое умножение, являющееся деформацией обычного умножения в когомологиях и являются первым шагом к пониманию зеркальной симметрии — удивительного явления, открытого физиками в конце 80-х годов прошлого века. Для алгебраического многообразия инварианты Громова–Виттена определяются через теорию пересечений пространства модулей кривых в этом многообразии.
Я постараюсь объяснить, что такое пространство модулей кривых и как с ним обращаться, какие возникают сложности с вычислением инвариантов Громова–Виттена и как их преодолевают.
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021