RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Геометрические структуры на комплексных многообразиях
4 октября 2011 г. 11:40, г. Москва
 


Some restrictions on existence of abelian complex structures

Isabel Dotti

University of Cordoba, Argentina
Видеозаписи:
Flash Video 287.4 Mb
Flash Video 1,749.0 Mb

Количество просмотров:
Эта страница:196
Видеофайлы:97

Isabel Dotti


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: We describe the structure of Lie groups admitting left invariant abelian complex structures in terms of commutative associative algebras. More precisely, we consider a distinguished class of Lie algebras admitting abelian complex structures given by abelian double products. The structure of these Lie algebras can be described in terms of a pair of commutative associative algebras satisfying a compatibility condition. We will show that when $g$ is a Lie algebra with an abelian complex structure $J$, and $g$ decomposes as $g=u+Ju$, with $u$ an abelian subalgebra, then $g$ is an abelian double product.
Joint work with A. Andrada and M. L. Barberis.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017