RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Геометрические структуры на комплексных многообразиях
5 октября 2011 г. 12:40, г. Москва
 


Locally conformally Kaehler structures on homogeneous spaces

Keizo Hasegawa

Niigata University
Видеозаписи:
Flash Video 258.8 Mb
Flash Video 1,573.3 Mb
MP4 258.8 Mb

Количество просмотров:
Эта страница:271
Видеофайлы:70

Keizo Hasegawa


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: A homogeneous Hermitian manifold $M$ with its homogeneous Hermitian structure $h$, defining a locally conformally Kaehler structure $w$ is called a homogeneous locally conformally Kaehler or shortly a homogeneous l.c.K. manifold. If a simply connected homogeneous l.c.K. manifold $M=G/H$, where $G$ is a connected Lie group and $H$ a closed subgroup of $G$, admits a free action of a discrete subgroup $D$ of $G$ from the left, then a double coset space $D\setminus G/H$ is called a locally homogeneous l.c.K. manifold. We discuss explicitly homogeneous and locally homogeneous l.c.K. structures on Hopf surfaces and Inoue surfaces, and their deformations. We also classify all complex surfaces admitting locally homogeneous l.c.K. structures.
We show as a main result a structure theorem of compact homogeneous l.c.K. manifolds, asserting that it has a structure of a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus. As an application of the theorem, we see that only compact homogeneous l.c.K. manifolds of complex dimension 2 are Hopf surfaces of homogeneous type. We also see that there exist no compact complex homogeneous l.c.K. manifolds; in particular neither complex Lie groups nor complex paralellizable manifolds admit their compatible l.c.K. structures.
We show as a main result a structure theorem of compact homogeneous l.c.K. manifolds, asserting that it has a structure of a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus. As an application of the theorem, we see that only compact homogeneous l.c.K. manifolds of complex dimension 2 are Hopf surfaces of homogeneous type. We also see that there exist no compact complex homogeneous l.c.K. manifolds; in particular neither complex Lie groups nor complex paralellizable manifolds admit their compatible l.c.K. structures.
This talk is based on a joint work with Y. Kamishima “Locally conformally Kaehler structures on homogeneous spaces” (arXiv:1101.3693).

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017