RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Традиционная новогодняя сессия МИАН-ПОМИ, 2009 «Логика и теоретическая информатика»
17 декабря 2009 г. 12:50, г. Москва
 


Алгебра доказуемости и разреженная топология

Л. Д. Беклемишев
Видеозаписи:
Real Video 180.8 Mb
Windows Media 184.1 Mb
Flash Video 215.0 Mb
MP4 215.0 Mb

Количество просмотров:
Эта страница:521
Видеофайлы:315

Л. Д. Беклемишев


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: В докладе рассмотрены два класса объектов, имеющих различную природу, но неожиданным образом аналогичные по своим свойствам. С одной стороны, так называемые алгебры доказуемости, возникающие при изучении свойств формальной доказуемости в арифметических теориях. С другой стороны, топологические пространства, наделённые одной или несколькими разреженными топологиями, то есть такими, что любое непустое подмножество $X$ имеет хотя бы одну изолированную точку.
Алгебра доказуемости формальной арифметической теории $T$ представляет собой булеву алгебру Линденбаума для $T$, расширенную оператором $D_0\colon L\to L$, сопоставляющим любому предложению $A$ гёделевское предложение, выражающее непротиворечивость теории $T+A$. Ее естественным обобщением является алгебра, в которой наряду с оператором $D_0$ рассматриваются операторы $n$-непротиворечивости $D_n$, выражающие истинность всех доказуемых в $T+A$ предложений с $n$ переменами кванторов.
Операторы $D_0, D_1, …$ могут интерпретироваться как операторы на алгебре всех подмножеств данного множества $X$. Оказывается, что в случае, когда на алгебре множеств выполнены все тождества алгебры доказуемости, каждый из этих операторов естественным образом определяет некоторую разреженную топологию на $X$, для которой $D_n(A)$ есть множество всех предельных точек множества $A$.
В докладе рассмотрены свойства соответствующих политопологических пространств и их связи с вопросами из теории доказательств, в частности вопрос о полноте топологических пространств относительно системы тождеств алгебр доказуемости.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018