RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2010
19 июля 2010 г. 11:15, г. Дубна
 


От Пуанкаре до Перельмана. Лекция 1

В. В. Успенский
Видеозаписи:
Windows Media 494.4 Mb
Flash Video 827.6 Mb
MP4 827.6 Mb

Количество просмотров:
Эта страница:2566
Видеофайлы:1475

В. В. Успенский


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: В 1900 году Пуанкаре сформулировал (неверную) теорему, дающую топологическую характеризацию трёхмерной сферы. В 1904 году он нашел замечательный контрпример к собственной теореме — так называемую сферу Пуанкаре (её можно описать как пространство додекаэдров, вписанных в заданную сферу). Правильный вариант своей теоремы Пуанкаре сформулировал в виде гипотезы, отметив, что её обсуждение «увело бы нас слишком далеко». Пуанкаре был прав — для доказательства его гипотезы понадобилось сто лет.
Столетняя история гипотезы Пуанкаре отмечена яркими событиями. В 1960-е годы удалось доказать $n$-мерный аналог этой гипотезы при $n\ge 5$, в 1980-е — при $n=4$. Трёхмерный случай не поддавался вплоть до 2002–2003, когда появились интернетные публикации Г. Перельмана.
В курсе будет изложена история гипотезы Пуанкаре — с точными определениями и формулировками, но без полных доказательств. Будут объяснены понятия, необходимые для понимания различных версий (топологическая, гладкая, кусочно-линейная) гипотезы Пуанкаре: многообразие, гомотопическая эквивалентность, фундаментальная группа. Слушатели узнают о классификации двумерных компактных многообразий («сферы с ручками и пленками Мебиуса»), об экзотических гладкостях на сферах и на $\mathbb R^4$ и о том, что одна из версий гипотезы Пуанкаре (гладкая 4-мерная) остается открытой. Мы обсудим также различные версии проблемы Шенфлиса: ограничивает ли вложенная $(n-1)$-мерная сфера в $\mathbb R^n$ вложенный $n$-мерный шар? Некоторые из этих версий остаются открытыми проблемами.
Предполагается, что слушатели имеют некоторое представление о многомерных евклидовых пространствах и не боятся слов «абелева группа» и «гомоморфизм».
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017