RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Международная конференция «Birational and affine geometry»
27 апреля 2012 г. 11:00–11:50, г. Москва, МИАН
 


Remarks on self-maps with fixed points over a number field

E. Yu. Amerik

National Research University "Higher School of Economics"
Видеозаписи:
Flash Video 2,235.8 Mb
Flash Video 367.7 Mb
MP4 367.7 Mb

Количество просмотров:
Эта страница:583
Видеофайлы:193

E. Yu. Amerik
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Let $f\colon X\dashrightarrow X$ be a rational self-map with a fixed point $q$, where everything is defined over a number field $K$. We make some remarks on the dynamics of $f$ in a $p$-adic neighbourhood of $q$ for a suitable prime $p$. In particular we show that if the eigenvalues of $Df_q$ are multiplicatively independent, then “most” algebraic points on $X$ have Zariski-dense iterated orbits. (The starting motivation for this was an effort to find an easier proof of the potential density of the variety of lines on a cubic fourfold, due to Voisin and myself. If time permits, I shall also sketch this easier proof.) The talk is based on joint work with Bogomolov and Rovinsky.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018