RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2012
27 июля 2012 г. 15:30, г. Дубна
 


Кривые: вещественные, комплексные и над конечными полями. Лекция 3

Р. М. Федоров
Видеозаписи:
Flash Video 486.8 Mb
Flash Video 2,960.1 Mb
MP4 486.8 Mb

Количество просмотров:
Эта страница:145
Видеофайлы:116

Р. М. Федоров


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Рассмотрим многочлен $f(x, y)$ с целыми коэффициентами. Если считать $x$ и $y$ вещественными числами, он задает кривую на плоскости. Если считать $x$ и $y$ комплексными, то получится комплексная кривая, с вещественной точки зрения представляющая собой поверхность. Если же в качестве $x$ и $y$ брать элементы конечного поля, то получится конечное множество. Оказывается, имеются связи между числом компонент вещественной кривой, топологией поверхности и числом решений уравнения в конечном поле. Об этих связях и пойдет речь.
Ожидается, что слушатели знакомы с понятием комплексного числа и встречались с конечными полями. Желательно знание основ матанализа (например, будут использоваться понятия производной и ряда). Также будет полезно знакомство с топологией, хотя все необходимые понятия и будут введены на занятиях.
Примерный план:
  • Кривые на вещественной проективной плоскости. Их комплексификация.
  • Топология комплексных кривых.
  • Максимальное число компонент вещественной кривой.
  • Кривые над конечными полями. Их дзета-функции.
  • Связь между дзета-функциями кривых над конечными полями и топологией комплексных кривых: гипотезы Вейля.
  • Ко(гомологии) и набросок доказательства гипотез Вейля для кривых.
  • Многообразия высших размерностей.

Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017