RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2012
26 июля 2012 г. 17:00, г. Дубна
 


Вариационные задачи. Лекция 1

В. Ю. Протасов
Видеозаписи:
Flash Video 3,148.7 Mb
Flash Video 525.5 Mb
MP4 525.5 Mb

Количество просмотров:
Эта страница:488
Видеофайлы:284

В. Ю. Протасов


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Вариационное исчисление — наука о поиске минимума функции в бесконечномерном пространстве. В отличие от привычных нам задач на минимум, когда нужно оптимальным образом выбрать число (параметр), или, скажем, точку на плоскости, в вариационных задачах требуется найти оптимальную функцию. При этом, одним и тем же набором средств решаются задачи самого разного происхождения: из классической механики, геометрии, математической экономики и т.д.
Мы начнем со старых задач, известных с XVII века, и, перекидывая мостки от одной задачи к другой, быстро доберемся до современных результатов и нерешенных проблем.
Вначале мы познакомимся с некоторыми общими принципами (уравнения Эйлера–Лагранжа, и т.д.) и посмотрим как они работают на примере задачи о минимальных поверхностях. В частности, мы увидим, почему форма мыльной пленки близка к графику экспоненты. От неё мы перейдём к аэродинамической задаче Ньютона, которая в течение трех веков считалась решенной, и лишь сравнительно недавно выяснилось, что её решение не совсем верно (а правильного решения, как и ответа, нет до сих пор). Здесь естественным образом возникнет понятие оптимального управления и принцип максимума, который выведет нас к современным результатам о феномене чаттеринга и импульсного управления.
Примерный план (разбивка — не по лекциям, а по темам):
  • - С чего всё началось? Задача о кривой наискорейшего спуска. Уравнения Эйлера–Лагранжа.
  • - Катеноида, или, почему лопаются мыльные пленки?
  • - Аэродинамическая задача Ньютона: 300 лет спустя — всё сначала. Поверхности почти нулевого сопротивления и полностью невидимые поверхности.
  • - Что такое оптимальное управление? Принцип максимума.
  • - Всё оказалось сложнее, чем мы думали… NP-сложность вариационных задач. Хаос с точками переключения: эффект чаттеринга и пример Фуллера. Отсутствие оптимальных траекторий, импульсное управление.

Большая часть курса доступна школьникам.

Website: http://www.mccme.ru/dubna/2012/courses/protasov.htm

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017