RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Международная конференция «Геометрические методы в математической физике»
16 декабря 2011 г. 16:00, г. Москва, МГУ им. М.В. Ломоносова
 


Gromov–Witten theory of orbifold projective lines and integrable hierarchies.

T. Milanov

Kavli Institute for the Physics and Mathematics of the Universe

Количество просмотров:
Эта страница:24

Аннотация: This is a joint work with H.-H. Tseng and Y. Schen. Let $X$ be the sphere with 3 orbifold points and a positive (orbifold) Euler characteristic. There are finitely many such orbifolds and they are in 1-to-1 correspondence with the Dynkin diagrams of type ADE. Our goal is to construct an integrable hierarchy in the Hirota bilinear form that governs the Gromov–Witten invariants of $X$. Following my earlier work with Givental and Frenkel, we obtain a realization of the basic representation of the corresponding affine Lie algebra in terms of the solutions of the quantum differential equations. Once the representation is constructed we can identify our hierarchy with a particular class of the so called Kac–Wakimoto hierarchies.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017