RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2013
21 июля 2013 г. 17:00, г. Дубна
 


Асимптотические задачи комбинаторики. Лекция 1

В. А. Клепцын
Видеозаписи:
Flash Video 464.3 Mb
MP4 464.3 Mb

Количество просмотров:
Эта страница:457
Видеофайлы:234

В. А. Клепцын


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Многие интересные задачи в комбинаторике формулируются в терминах «как выглядит случайный большой объект» или «сколько есть таких объектов данного размера». К примеру, в случайной последовательности нулей и единиц большой длины $n$ нулей и единиц примерно поровну, а в разложении случайной перестановки $n$ элементов в произведение независимых циклов, скорее всего, есть «большой» цикл (имеющий сравнимую с $n$ длину), а всего циклов порядка логарифма $n$.
Оказывается, что задачи «подсчитать количество» и «найти предельный вид» зачастую связаны друг с другом. Мы разберём такую связь, решив (лишь на физическом уровне строгости!) несколько таких задач:
  • Как выглядит типичное разбиение числа n в сумму невозрастающих слагаемых? Какова асимптотика количества таких разбиений (формула Харди–Рамануджана)?
  • Что такое аффинная длина, и как выглядит типичная ломаная, идущая из вершины $(0,1)$ в вершину $(1,0)$ единичного квадрата, если её вершины принадлежат решётке с шагом $1/n$?
  • Как посчитать, сколькими способами на доминошки можно разрезать данную плоскую фигуру? Как выглядит типичное разбиение ацтекского бриллианта на доминошки? Откуда берётся «полярный круг», за которым все доминошки оказываются «замороженными»? И какое к этому отношение имеет угол кристалла и кубики, сложенные в углу комнаты?

Курс предназначен для студентов и школьников, знакомых с началами анализа.

Website: http://www.mccme.ru/dubna/2013/courses/kleptsyn.htm
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017