Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2013
23 июля 2013 г. 15:30, г. Дубна
 


Непрерывная комбинаторика. Лекция 1

А. А. Разборов
Видеозаписи:
Flash Video 504.1 Mb
MP4 504.1 Mb

Количество просмотров:
Эта страница:654
Видеофайлы:284

А. А. Разборов


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Комбинаторика создавалась как науке о конечном (дискретном). И хотя в современной комбинаторике широко используются аналитические и алгебраические методы и, наоборот, комбинаторные методы играют важную роль в самых разных областях «чистой» математики, сами объекты изучения изменились мало со времен Эйлера. Это конечные, в худшем случае счетные, множества с различной дискретной структурой, и именно с этой фразы начинается статья про комбинаторику в Википедии.
В нашем курсе мы поговорим об активно ведущихся исследованиях, ставящими сложившийся status quo под сомнение. Одним из источников этого направления служит резко повышающийся, в силу очевидных и вполне прагматических причин, интерес к объектам все еще конечным, но не просто большим, а очень большим. В такой ситуации для любого математика естественно попытаться осуществить предельный переход и непосредственно рассматривать их бесконечные аналоги. Это в самом деле оказывается возможным и приводит к красивой и стройной теории, изучающей объекты с такими звучными именами, как графоны и графины и связанной с самыми разными областями математики. В чем-то их поведение аналогично поведению их меньших братьев, но возникают и весьма поучительные неожиданности.
Для понимания курса полезно беглое знакомство с основами элементарной комбинаторики, элементарной теории вероятностей и самыми началами анализа. Но в принципе строгих определений, не говоря уже про доказательства, у нас будет немного, поэтому благожелательный слушатель, готовый принять некоторый вещи на веру, может обойтись и без этого.

Website: http://www.mccme.ru/dubna/2013/courses/razborov.htm
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021