RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2013
29 июля 2013 г. 09:30, г. Дубна
 


Случайные блуждания на плоскости и их пределы: простое случайное блуждание, LERW и SAW. Лекция 3

Д. С. Челкак
Видеозаписи:
Flash Video 492.5 Mb
MP4 492.5 Mb

Количество просмотров:
Эта страница:542
Видеофайлы:140

Д. С. Челкак


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Как выглядит случайная кривая на плоскости? И что это вообще такое? Классический пример – простое случайное блуждание на квадратной решетке: пьяница стартует из бара в начале координат, проходит один квартал в случайно выбранном направлении (на север, запад, юг или восток), после чего повторяет процедуру на каждом перекрестке, независимо от того, что происходило ранее. Какие у него шансы попасть на нужную окраину города? Или вернуться в исходный бар, если город бесконечен? На первых двух лекциях мы обсудим связи этой, изначально чисто комбинаторной задачи, со школьной физикой и комплексным анализом. В частности, мы поговорим о броуновском движении: что происходит, если размер одного шага нашего процесса – очень маленький (например, мы глядим на Манхэттен из пролетающего самолета, или на пыльцу в капле воды через микроскоп).
А как можно естественным образом определить случайную несамопересекающуюся кривую на плоскости и какими свойствами будут обладать такие кривые? Третья и четвертая лекции будут посвящены современным результатам в этом направлении: случайному блужданию с удаленными петлями (LERW = Loop Erased Random Walk) и самоизбегающему случайному блужданию (SAW = Self Avoiding Walk). Для модели LERW мы постараемся объяснить основную идею, позволяющую изучать предел таких блужданий при измельчении шага решетки, а также ее связь с другой важной конструкцией – случайным остовным деревом заданного графа. Для модели SAW будет рассказано доказательство важного недавнего результата (2010 г.) о перечислении несамопересекающихся ломаных заданной длины, нарисованных на шестиугольной решетке.
Курс предназначен для студентов и школьников, знакомых с началами анализа и имеющими общее представление о теории вероятностей. Третья и четвертая лекции независимы друг от друга и от первых двух: их можно слушать, если вы уже обладаете базовыми знаниями о случайном блуждании на плоскости (или же посетили первые две лекции). По ходу дела будут появляться листочки с задачами к лекциям.
Лекции 1–2. Простое случайное блуждание на квадратной решетке. Вероятность выхода из области через заданную дугу и задача Дирихле для дискретно-гармонических функций. Функция Грина в области как сумма по траекториям случайного блуждания. Неограниченность свободной функции Грина и возвратность случайного блуждания на плоскости.
Броуновское движение как предел случайных блужданий на измельчающихся решетках. Аналитические функции, конформные отображения и свойство конформной инвариантности вероятности выхода из области через заданную дугу. Обсуждения свойства конформной инвариантности траекторий броуновского движения как следствия конформной инвариантности вероятностей выхода.
Лекция 3. LERW: случайное блуждание с удаленными петлями. Независимость вероятностного распределения получаемых траекторий от процедуры удаления петель: «с начала» или «с конца». Мартингальное свойство дискретного ядро Пуассона по отношению к растущей кривой. Обсуждение конформной инвариантности предельных траекторий (на измельчающихся решетках) случайных блужданий с удаленными петлями и их свойств.
Лекция 4. SAW: самоизбегающие блуждания. Определение модели, свойство субаддитивности, константа связности. Построение дискретно-аналитической наблюдаемой как суммы по путям с комплексным весом. Доказательство теоремы H. Duminil–Copin'а и С. К. Смирнова (2010 г.) о точном значении константы связности для шестиугольной решетки. Обсуждение конформной инвариантности предельных траекторий: чего не хватает для полного доказательства?

Website: http://www.mccme.ru/dubna/2013/courses/chelkak.htm
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017