RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






International Conference dedicated to the 60-th birthday of Boris Feigin "Representation Theory and applications to Combinatorics, Geometry and Quantum Physics"
13 декабря 2013 г. 10:00, г. Москва, Независимый московский университет
 


Highest weight categories and Macdonald polynomials

A. S. Khoroshkin
Видеозаписи:
Flash Video 363.3 Mb
MP4 363.3 Mb

Количество просмотров:
Эта страница:206
Видеофайлы:99

A. S. Khoroshkin


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: The goal of the talk is to explain an approach to the problem of categorification of Macdonald polynomials based on derived categories of modules over Lie algebra of currents. First, I recall the definition of Macdonald polynomials as the orthogonalisation of the linear monomial basis in the ring of symmetric functions with respect to the certain given pairing depending on two parameters. I will give the relationship of the latter pairing with the Grothendieck ring of the category of modules over the Lie algebra of currents. Second, I will explain the orthogonalisation procedure in derived categories and give a hint on categorification problem. Third, I discuss when it is possible to avoid the derived setting and get different applications for the category of modules.
In particular, we will prove the BGG reciprocity for the category of modules over the Lie algebra $g\otimes \mathbb{C}[x]$ with $g$-semisimple.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017