RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






International Conference dedicated to the 60-th birthday of Boris Feigin "Representation Theory and applications to Combinatorics, Geometry and Quantum Physics"
13 декабря 2013 г. 15:30, г. Москва, Независимый московский университет
 


Demazure Descent Data and Braid group actions on categories

S. M. Arkhipov
Видеозаписи:
Flash Video 453.4 Mb
MP4 453.4 Mb

Количество просмотров:
Эта страница:175
Видеофайлы:88

S. M. Arkhipov


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: We recall the classical notion of Demazure operators acting on the $K$-theory of a $G$-variety $X$, $G$ being a reductive algebraic group.
Then we propose a categorification of the algebra generated by Demazure operators and introduce the notion of Demazure Descent Data (DDD) on a category. We define the descent category for a DDD on a triangulated category $C$.
We explain how DDD arises naturally from a monoidal action of the tensor category of quasicoherent sheaves on $B\setminus G/B$ on a category. A natural example of such picture is provided by the derived category of quasicoherent sheaves on $X/B$ for a scheme $X$ with an action of the reductive group $G$. The descent category in this case is the derived category of quasicoherent sheaves on $X/G$.
Next we replace the category of quasicoherent sheaves by DG-modules over the algebra of differential forms on $X$. We explain how an analog of the construction above gives rise to a braid group action of a category.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017