RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
 Видеотека Архив Популярное видео Поиск RSS Новые поступления

Для просмотра файлов Вам могут потребоваться

Международная молодежная конференция «Геометрия и управление»
15 апреля 2014 г. 17:00, Стендовые доклады, г. Москва, МИАН

Polynomial Integrals of the Geodesics Equations in Two-Dimensional Case

Yulia Bagderina

Institute of Mathematics with Computer Center of RAS, Ufa, Russia

 Количество просмотров: Эта страница: 67 Материалы: 35

Аннотация: Let $M^2$ be two-dimensional surface with the Riemannian metric
$$\tag{1} ds^2=g_{11}(x,y)dx^2+2g_{12}(x,y)dxdy+g_{22}(x,y)dy^2.$$
Geodesics equations of a given metric can be treated as a system of Euler-Lagrange equations
$$\tag{2} \frac{d}{dt}L_{\dot{x}}-L_x=0,\qquad \frac{d}{dt}L_{\dot{y}}-L_y=0$$
with the Lagrangian
$$\tag{3} L(x,y,\dot{x},\dot{y})=\frac 12g_{11}(x,y)\dot{x}^2 +g_{12}(x,y)\dot{x}\dot{y}+\frac 12g_{22}(x,y)\dot{y}^2.$$
Geodesic flow of the metric (1) is Liouville integrable, if it possesses a smooth first integral $F$ functionally independent of the Lagrangian (3). In the present work we consider the problem of the existence of the polynomial integral of the system (2), (3) of the first degree
$$\tag{4} F_1=b_0(x,y)\dot{x}+b_1(x,y)\dot{y},$$
the second degree
$$\tag{5} F_2=b_0(x,y)\dot{x}^2+2b_1(x,y)\dot{x}\dot{y}+b_2(x,y)\dot{y}^2$$
and the third degree
$$\tag{6} F_3=b_0(x,y)\dot{x}^3+3b_1(x,y)\dot{x}^2\dot{y}+3b_2(x,y)\dot{x}\dot{y}^2+b_3(x,y)\dot{y}^3.$$
For an integral (4), (5) or (6) the existence conditions are obtained as the compatibility conditions of an overdetermined system of linear homogeneous first-order equations in the functions $b_i(x,y)$. Here these conditions are expressed in terms of the invariants
$$\tag{7} I_1(x,y)=\frac{J_1}{j_0J_0^3},\qquad I_2(x,y)=\frac{J_2}{j_0J_0^2}$$
of the equivalence transformations of the family of equations (2), (3) defined by
$$\tilde t=k(t+t_0),\qquad \tilde x=\varphi(x,y),\qquad \tilde y=\psi(x,y),\qquad k,t_0=const.$$
In (7) the value $J_0$ up to a constant multiplier coincides with the main (scalar) curvature $K$ of the surface $M^2$,
$$j_0=g_{11}g_{22}-g_{12}^2,\qquad J_1=g_{22}J_{0x}^2-2g_{12}J_{0x}J_{0y}+g_{11}J_{0y}^2.$$

All results on the integrals (4)–(6) are obtained in assumption of the non-degeneracy of the surface $M^2$. It means, when the conditions
$$\tag{8} j_0\neq 0,\qquad J_0\neq 0,\qquad J_1\neq 0$$
hold. The geometrical sense of the first two conditions (8) is obvious (non-degeneracy of the matrix $g_{ij}(x,y)$ and nonzero curvature of the surface). The sense of the third condition (8) is not so evident. The question is what properties has the degenerate surface $M^2$ with the curvature $K$, which satisfies the relation
$$\tag{9} g_{22}(x,y)(\frac{\partial K}{\partial x})^2 -2g_{12}(x,y)\frac{\partial K}{\partial x}\frac{\partial K}{\partial y} +g_{11}(x,y)(\frac{\partial K}{\partial y})^2=0.$$

Материалы: abstract.pdf (57.3 Kb)

Язык доклада: английский

 ОТПРАВИТЬ:
 Обратная связь: math-net2019_01 [at] mi-ras ru Пользовательское соглашение Регистрация Логотипы © Математический институт им. В. А. Стеклова РАН, 2019