RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Международная молодежная конференция «Геометрия и управление»
17 апреля 2014 г. 12:00, г. Москва, МИАН
 


The Laplace–Beltrami Operator on Conic and Anti-conic Surfaces

Dario Prandi

LSIS, Université de Toulon, France
Видеозаписи:
Flash Video 227.5 Mb
Flash Video 1,358.3 Mb
MP4 227.5 Mb
Материалы:
Adobe PDF 991.4 Kb
Adobe PDF 43.7 Kb

Количество просмотров:
Эта страница:115
Видеофайлы:51
Материалы:61

Dario Prandi


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: We consider the evolution of a free particle on a two-dimensional manifold endowed with the degenerate Riemannian metric $ds^2=dx^2+|x|^{2\alpha}d\theta^2$, where $x\in R$, $\theta\in S^1$ and the parameter $\alpha\in R$. For $\alpha$ smaller or equal to $-1$ this metric describes cone-like manifolds (for $\alpha=-1$ it is a flat cone). For $\alpha=0$ it is a cylinder. For $\alpha$ bigger or equal to $1$ it is a Grushin-like metric.
In particular, we discuss whether a free particle or the heat can cross the singular set ${x=0}$ or not, and in which cases the singularity absorbs the heat. (The latter problem is known as the stochastic completeness problem.)
In the last part of the talk we will present some recent results regarding the spectrum of the Laplace–Beltrami operator associated with these metrics and the Aharonov-Bohm effect in the Grushin case.
This is a joint work with U. Boscain and M. Seri.

Материалы: slides.pdf (991.4 Kb), abstract.pdf (43.7 Kb)

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017