RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Летняя школа «Современная математика», 2014
23 июля 2014 г. 17:00, г. Дубна
 


Вокруг Понселе. Лекция 3

Г. Б. Шабат
Видеозаписи:
Flash Video 515.1 Mb
MP4 515.1 Mb
Материалы:
Adobe PDF 133.2 Kb
Adobe PDF 74.5 Kb

Количество просмотров:
Эта страница:141
Видеофайлы:70
Материалы:29

Г. Б. Шабат


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Теорема Понселе о замыкании лежит на границе между элементарной геометрией и «взрослой» математикой. В своём простейшем виде она утверждает, что пара окружностей, вписанная в некоторый треугольник и описанная около него, является вписанной и описанной для бесконечного множества треугольников. В этом виде теорема Понселе более или менее равносильна (с привлечением внешкольных соображений о конфигурационных пространствах) формуле Эйлера $d^2=R^2-2Rr$, связывающей расстояние между центрами окружностей с их радиусами.
Различные варианты и обобщения сформулированной теоремы в течение двух столетий привлекают внимание математиков, среди которых есть выдающиеся – А. Кэли, Ф. Гриффитс, Н. Хитчин. Обнаружены связи теоремы Понселе с эллиптическими и модулярными кривыми, с векторными расслоениями над проективными пространствами, с алгебраическими решениями нелинейных дифференциальных уравнений и с другими разделами математики. В курсе предполагается дать взрослое понимание теоремы Понселе и рассказать о некоторых из упомянутых связей.

Программа курса
1. Краткая история теоремы: от саратовского плена Понселе до современных изложений. Окружности в аксиоматической планиметрии; теорема Паскаля. Теорема Понселе и формула Эйлера. Первые обобщения.
2. Пары коник на комплексной проективной плоскости и эллиптические кривые, снабжённые сдвигом. Уравнения. Модулярные кривые.
3. Проективная геометрия многочленов степени 2 и 3. Линейные семейства кубических уравнений и параметризация пар Понселе (по Хитчину).
4. Приложения: алгебраические решения дифференциальных уравнений и проч.

Материалы: shabat_ex2.pdf (133.2 Kb), shabat_ex1.pdf (74.5 Kb)

Website: http://www.mccme.ru/dubna/2014/courses/shabat.htm
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017