RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International scientific conference "Days of Classical Mechanics"
January 26, 2015 16:40, Moscow, Steklov Mathematical Institute of RAS, Gubkina, 8
 


Integrable geodesic flows on 2-torus and the systems of hydrodynamical type

A. E. Mironov
Video records:
Flash Video 176.2 Mb
Flash Video 1,055.7 Mb
MP4 176.2 Mb

Number of views:
This page:304
Video files:98

A. E. Mironov
Photo Gallery


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: We prove that the question of existence of polynomial first integrals of the geodesic flow on 2-torus leads to a semi-Hamiltonian quasi-linear equations, i.e. the system can be written in the conservation lows form and in the hyperbolic region it has Riemannian invariants. We also prove that in the elliptic region cubic and quartic integrals are reduced to the integrals of degree one or two. The results obtained with M. Bialy.

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018