RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 27, 2015 15:20–15:45, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
 


Uniform boundness of Steklov's operator in variable exponent Morrey space

A. Ghorbanalizadeh

Institute for Advanced Studies in Basic Sciences (IASBS), Iran
Materials:
Adobe PDF 138.3 Kb

Number of views:
This page:83
Materials:51

Abstract: Let $p( \cdot )$ be a continuous function on $I_0=[0,1]$ with values in $[1,\infty)$. We suppose that
\begin{equation} \label{N352:gag21} 1\le p_{-} \leq p(x)\leq p_{+}<\infty, \end{equation}
where $p_{-}:=\operatorname{ess \inf}_{x \in I_0}p(x) \ge 1$, $p_{+}:=\operatorname{ess \sup}_{x \in I_0}p(x)<\infty$, and also suppose the $p( \cdot )$ satisfy the log-condition i.e.
\begin{equation} \label{N352:gag22} |p(x)-p(y)|\leq \frac{A}{-\ln|x-y|}\mspace{2mu}, \qquad |x-y|\leq \frac{1}{2}\mspace{2mu}, \quad x,y\in I_{0}. \end{equation}

Let $\lambda( \cdot )$ be a measurable function on $I_0$ with values in $[0,1]$. We define the variable exponent Morrey space $M^{p( \cdot ),\lambda( \cdot )}(I_0)$ as the set of integrable functions $f$ on $I_0$ such that
$$ I_{p( \cdot ),\lambda( \cdot )}(f):= \sup_{\substack{x \in I_0 0< r <2 \pi}} r^{-\lambda(x)} \int_{\widetilde{I}(x,r)}|f|^{p(y)} dy < \infty. $$

The norm of space $M^{p( \cdot ),\lambda( \cdot )}(I_0)$ may be defined in two forms,
$$ \|f\|_{1}:= \inf \{\eta>0: I_{p( \cdot ),\lambda( \cdot )}(\frac{f}{\eta})<1 \} , $$
and
$$ \|f\|_{2}:= \sup_{\substack{x \in I_0 0< r <2 \pi}} r^{-\frac{\lambda(x)}{p(x)}}\|f \chi_{\widetilde{I}(x,r)}\|_{L^{p( \cdot )}(I_0)} . $$

Since two norms coincide, we put
\begin{equation*} \|f\|_{M^{p( \cdot ),\lambda( \cdot )}(I_0)} :=\|f\|_{1} = \|f\|_{2}. \end{equation*}

The Steklov operator is defined as
$$ s_{h}(f)(x) :=\frac{1}{h} \int_{0}^{h} f(x+t) dt. $$
Our main result is following.
Theorem. Let $f\in M^{p( \cdot ),\lambda( \cdot )}(I_0)$, $\lambda_{+}:=\operatorname{ess \sup}_{x \in I_0} \lambda(x)$, $0 \leq \lambda(x) \leq \lambda_{+} < 1$, and $p( \cdot )$ satisfy conditions \eqref{N352:gag21} and \eqref{N352:gag22}, then the family of operators $s_{h}(f)$, $0 < h \le 1$, is uniformly bounded in $M^{p( \cdot ),\lambda( \cdot )}(I_0)$.
This contribution is based on recent joint work with Professor Vagif Guliyev.

Materials: abstract.pdf (138.3 Kb)

Language: English

References
  1. A. Almeida, J. Hasanov, S. Samko, “Maximal and potential operators in variable exponent Morrey spaces”, Georgian Math. J., 15:2 (2008), 195–208  mathscinet  zmath  isi
  2. P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Academic Press, New York, 1971
  3. O. Kovavcik, J. Rakosnik, “On spaces $L^{p (x)}$ and $W^{k, p(x)}$”, Czechoslovak Math. J., 41 (1991), 592–618  mathscinet  isi
  4. I. I. Sharapudinov, “On direct and inverse theorems of approximation theory in variable Lebesgue and Sobolev spaces”, Azerbaijan J. Math., 4:1 (2014), 53–71  mathscinet
  5. I. I. Sharapudinov, “Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier–Haar series”, Mat. Sb., 205:2 (2014), 145–160  mathnet  crossref  mathscinet  zmath
  6. I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. RAN. Ser. Mat., 77:2 (2013), 197–224  mathnet  crossref  mathscinet  zmath


SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018