RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 Video Library Archive Most viewed videos Search RSS New in collection

You may need the following programs to see the files

International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 27, 2015 15:20–15:45, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS

Uniform boundness of Steklov's operator in variable exponent Morrey space

Institute for Advanced Studies in Basic Sciences (IASBS), Iran

Abstract: Let $p( \cdot )$ be a continuous function on $I_0=[0,1]$ with values in $[1,\infty)$. We suppose that
$$\label{N352:gag21} 1\le p_{-} \leq p(x)\leq p_{+}<\infty,$$
where $p_{-}:=\operatorname{ess \inf}_{x \in I_0}p(x) \ge 1$, $p_{+}:=\operatorname{ess \sup}_{x \in I_0}p(x)<\infty$, and also suppose the $p( \cdot )$ satisfy the log-condition i.e.
$$\label{N352:gag22} |p(x)-p(y)|\leq \frac{A}{-\ln|x-y|}\mspace{2mu}, \qquad |x-y|\leq \frac{1}{2}\mspace{2mu}, \quad x,y\in I_{0}.$$

Let $\lambda( \cdot )$ be a measurable function on $I_0$ with values in $[0,1]$. We define the variable exponent Morrey space $M^{p( \cdot ),\lambda( \cdot )}(I_0)$ as the set of integrable functions $f$ on $I_0$ such that
$$I_{p( \cdot ),\lambda( \cdot )}(f):= \sup_{\substack{x \in I_0 0< r <2 \pi}} r^{-\lambda(x)} \int_{\widetilde{I}(x,r)}|f|^{p(y)} dy < \infty.$$

The norm of space $M^{p( \cdot ),\lambda( \cdot )}(I_0)$ may be defined in two forms,
$$\|f\|_{1}:= \inf \{\eta>0: I_{p( \cdot ),\lambda( \cdot )}(\frac{f}{\eta})<1 \} ,$$
and
$$\|f\|_{2}:= \sup_{\substack{x \in I_0 0< r <2 \pi}} r^{-\frac{\lambda(x)}{p(x)}}\|f \chi_{\widetilde{I}(x,r)}\|_{L^{p( \cdot )}(I_0)} .$$

Since two norms coincide, we put
\begin{equation*} \|f\|_{M^{p( \cdot ),\lambda( \cdot )}(I_0)} :=\|f\|_{1} = \|f\|_{2}. \end{equation*}

The Steklov operator is defined as
$$s_{h}(f)(x) :=\frac{1}{h} \int_{0}^{h} f(x+t) dt.$$
Our main result is following.
Theorem. Let $f\in M^{p( \cdot ),\lambda( \cdot )}(I_0)$, $\lambda_{+}:=\operatorname{ess \sup}_{x \in I_0} \lambda(x)$, $0 \leq \lambda(x) \leq \lambda_{+} < 1$, and $p( \cdot )$ satisfy conditions \eqref{N352:gag21} and \eqref{N352:gag22}, then the family of operators $s_{h}(f)$, $0 < h \le 1$, is uniformly bounded in $M^{p( \cdot ),\lambda( \cdot )}(I_0)$.
This contribution is based on recent joint work with Professor Vagif Guliyev.

Materials: abstract.pdf (138.3 Kb)

Language: English

References
1. A. Almeida, J. Hasanov, S. Samko, “Maximal and potential operators in variable exponent Morrey spaces”, Georgian Math. J., 15:2 (2008), 195–208
2. P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Academic Press, New York, 1971
3. O. Kovavcik, J. Rakosnik, “On spaces $L^{p (x)}$ and $W^{k, p(x)}$”, Czechoslovak Math. J., 41 (1991), 592–618
4. I. I. Sharapudinov, “On direct and inverse theorems of approximation theory in variable Lebesgue and Sobolev spaces”, Azerbaijan J. Math., 4:1 (2014), 53–71
5. I. I. Sharapudinov, “Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier–Haar series”, Mat. Sb., 205:2 (2014), 145–160
6. I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. RAN. Ser. Mat., 77:2 (2013), 197–224

 SHARE: