Video Library
Most viewed videos

New in collection

Summer School "Contemporary Mathematics", 2015
July 24, 2015 15:30, Dubna

Groups, trees, and ends. Lesson 3

M. Triestino
Video records:
Flash Video 3,100.8 Mb
Flash Video 517.5 Mb
MP4 517.5 Mb
Adobe PDF 63.8 Kb
Adobe PDF 58.1 Kb

Number of views:
This page:126
Video files:42

M. Triestino

Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Abstract: Что такое группа? Алгебраисты учат, будто это множество с двумя операциями, удовлетворяющими куче легко забываемых аксиом. Это определение вызывает естественный протест: зачем разумному человеку такие пары операций? «Да пропади она пропадом, эта математика» – заключает студент (делающийся в будущем, возможно, министром науки).
В. И. Арнольд. О преподавании математики

This is by far my favourite description of a group! In the following paragraph, Arnold argues that a group exists – in the «ontological» sense – if we can think of it acting on some space. Such space could be the group itself, however the relevant point is that this immediately leads to consider some relevant additional structure, some geometry.
In this series of lectures, we will discover groups through their actions on graphs and in particular on trees, with the help of the very elegant theory developed by Bass and Serre. The leading idea will be that some mild geometrical property can determine a very rigid algebraic structure in the group.
Considering one possible example, to a group one can associate its ends — the «points at infinity» of its graph. For instance, $\mathbb Z$ has two ends (plus and minus infinity), $\mathbb Z^2$ has one (infinity), free group with two generators has infinitely many. A renown theorem by Stallings proposes an algebraic description for groups with infinitely many ends.
A nice proof of this theorem passes through the Bass–Serre theory, describing, how groups can act on trees. We will explain this theory, and, if the time permits, will say a few words on what is left to prove the Stallings theorem, how a group with infinitely many ends can be forced to act on a tree.
Prerequisites: group and graph theory.

Materials: triestino_ex2.pdf (63.8 Kb), triestino_ex1.pdf (58.1 Kb)

Language: English

Series of lectures

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022