RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Video Library
Archive
Most viewed videos

Search
RSS
New in collection







May 25, 2017 12:10–12:30
 


Dual graphs on surfaces

V. A. Gurvich
Video records:
MP4 563.4 Mb
MP4 143.2 Mb

Number of views:
This page:99
Video files:22

V. A. Gurvich


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Consider an embedding of a graphs G in a surface S (map). Assume that the difference splits into connected components (countries), each one homeomorphic to an open disk. (It follows from this assumption that graphs G must be connected). Introduce a graph G* dual to G realizing the neighbor relations among countries. The graphs G and G* have the same set of edges. More precisely, there is a natural one-to-one correspondence between their edge-sets. An arbitrary pair of graphs with common set of edges is called a plan. Every map induces a plan. A plan is called geographic if it is induced by a map. In terms of Eulerian graphs we obtain criteria for a plan to be geographic. Partially, these results were announced by Vladimir Gurvich and George Shabat. Charts of Surfaces and their Schemes, Soviet Math. Dokl. 39:2 (1989) 390-394.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021