RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






XVII летняя школа «Современная математика», посвященная памяти Виталия Арнольда, 2017
20 июля 2017 г. 11:15, г. Дубна, дом отдыха «Ратмино»
 


Потеря и спасение факториальности. Занятие 1

K. Conrad
Видеозаписи:
MP4 2,214.9 Mb
MP4 606.7 Mb

Количество просмотров:
Эта страница:172
Видеофайлы:108

K. Conrad


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: В кольце целых чисел каждый элемент (больше единицы) можно однозначно представить в виде произведения простых, с точностью до порядка сомножителей, это свойство называется факториальностью. Другие «области чисел» удовлетворяют этому свойству тоже, и факториальность вне рамок обыкновенных целых применяется в теории чисел, чтобы найти все решения некоторых диофантовых уравнений.
К сожалению, свойство факториальности работает не во всех ситуациях, где возникает понятие простых. К счастью, используя более широкую точку зрения о значении разложения на простых (а именно, какие объекты мы хотим разлагать), можно спасти идею факториальности во многих случаях.
Мы обсудим этот феномен для квадратичных колец целых, и увидим как некоторая абелева группа точно измеряет отклонение нового типа факториальности от классической факториальности.
От слушателей потребуется знакомство с арифметикой вычетов.

Website: https://www.mccme.ru/dubna/2017/courses/kconrad.html
Цикл лекций

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017