RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Video Library
Archive
Most viewed videos

Search
RSS
New in collection





You may need the following programs to see the files






International symposium "Arithmetic days in Moscow"
June 13, 2011 17:50, Moscow, Steklov Mathematical Institute
 


An effective proof of the hyperelliptic Shafarevich conjecture

R. von Känel

ETH Zürich
Video records:
Flash Video 317.5 Mb
Flash Video 1,932.0 Mb

Number of views:
This page:193
Video files:86

R. von Känel


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Let $K$ be a field, $S$ be a finite set of places of $K$ and let $g\ge 1$ be an integer. The Shafarevich conjecture says that there are only finitely many $K$-isomorphism classes of curves over $K$ of genus $g$ with good reduction outside $S$. This was proved by Faltings in 1983. An effective version of the conjecture would imply inter alia the effective Mordell and the abc conjecture. In the talk we give an effective version of the Shafarevich conjecture for hyperelliptic curves and discuss some applications.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019