RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления





Для просмотра файлов Вам могут потребоваться






Международная конференция «Birational and affine geometry»
24 апреля 2012 г. 14:30–15:20, г. Москва, МИАН
 


On the rectifiability of rational plane curves

K. Palkaab

a Polish academy of sciences
b University of Quebec at Montreal

Количество просмотров:
Эта страница:240

K. Palka
Фотогалерея

Аннотация: Let $\bar E\subseteq \mathbb{P}^2$ be a rational cuspidal curve defined over complex numbers. The Coolidge-Nagata conjecture states that such a curve is rectifiable, i.e. it can be transformed into a line by a birational automorphism of $\mathbb{P}^2$. We will prove some new results in this direction, showing in particular that the conjecture holds if $\bar E$ has more than four cusps.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019