Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар по арифметической алгебраической геометрии
15 мая 2007 г. 11:30, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
 


On transfer of automorphic structures related with orthogonal and symplectic groups

A. N. Andrianov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Количество просмотров:
Эта страница:154

Аннотация: An automorphic structure related with (arithmetical) discrete subgroup of a Lie group is a diagonalizable linear representation of Hecke–Shimura algebra of this discrete subgroup on a space of automorphic forms by Hecke operators together with Euler products (zeta functions) associated to common eigenfunctions of the operators. By transfer of automorphic structures related with two groups we understand an embedding of corresponding spaces of automorphic forms compatible with the action of Hecke operators and relatting the relevant zeta functions. Traditionally they were considering "lifts" of automorphic structures to similar groups of higher order such as lifts of automorphic structures on $SL_n$ or Saito–Kurokawa and Ikeda lifts for Siegel modular forms. Recently were considered examples of transfer of automorphic structures related with quite different groups. In this talk we will discuss the transfer of automorphic structures related with (finite) groups of integral units of integral positive definite quaternary quadratic forms and subgroups of the Siegel modular group of genus 2. No special knowledge is presupposed.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021