Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Научный семинар «Актуальные проблемы геометрии и механики» имени проф. В. В. Трофимова
10 февраля 2017 г. 18:30, г. Москва, Механико-математический факультет МГУ, ауд. 1311
 


Интегрируемые системы с диссипацией на касательном расслоении двумерного многообразия (юбилейный доклад, посвященный 50-летию профессора М. В. Шамолина)

М. В. Шамолин

Количество просмотров:
Эта страница:113

Аннотация: Как известно, понятие интегрируемости, вообще говоря, достаточно расплывчатое. При его построении необходимо учитывать в каком смысле оно понимается, в классе каких функций ищутся первые интегралы и т.д. В данной работе принимается такой подход, который учитывает в качестве класса функций как первых интегралов трансцендентные функции, причем элементарные. Здесь трансцендентность понимается не в смысле теории элементарных функций (например тригонометрических), а в смысле наличия у них существенно особых точек (в силу классификации, принятой в теории функций комплексного переменного, когда функция имеет существенно особые точки).
Ранее уже была показана полная интегрируемость уравнений пространственного движения тела в сопротивляющейся среде, когда у системы динамических уравнений существует полный набор трансцендентных первых интегралов. Далее, была исследована динамическая часть уравнений движения различных динамически симметричных четырехмерных твердых тел. При этом рассматриваемые системы в некоторых случаях сводились к системе с диссипацией на касательном расслоении двумерной сферы.
В данной работе сначала рассматриваются уравнения геодезических на касательном расслоении гладкого двумерного многообразия (система в отсутствии внешнего поля сил). Строится переход к удобным координатам касательного пространства. В дальнейшем сначала вводятся внешние силовые поля, которые являются потенциальными, и рассматриваемые системы четвертого порядка обладают полным набором (тремя) гладких первых интегралов. А затем в таких системах вводятся дополнительные члены, в результате чего системы перестают быть консервативными, а точнее, становятся системами с так называемой знакопеременной диссипацией. При этом при некоторых условиях они обладают полным набором (негладких) трансцендентных первых интегралов, в ряде случаев выражающихся через конечную комбинацию элементарных функций.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021