Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Научный семинар «Актуальные проблемы геометрии и механики» имени проф. В. В. Трофимова
30 марта 2012 г. 18:30, г. Москва, Механико-математический факультет МГУ, ауд. 1311
 


Задача о маятнике в неконсервативном поле

М. В. Шамолин

Количество просмотров:
Эта страница:102

Аннотация: Работа представляет собой обзор по полученным ранее, а также новым случаям интегрируемости уравнений движения закрепленного маятника, находящегося в неконсервативном поле сил. Исследуемые задачи описываются динамическими системами с переменной диссипацией с нулевым средним.
Задача поиска полного набора трансцендентных первых интегралов систем с дисипацией является достаточно актуальной, и ей было ранее посвящено множество работ. Но в данной работе введен в рассмотрение новый класс динамических систем, имеющих периодическую координату. Благодаря наличию в таких системах нетривиальных групп симметрий, показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в среднем за период по имеющейся периодической координаты диссипация в системе равна нулю, хотя в разных областях фазового пространства в системе может присутствовать как подкачка энергии извне, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике закрепленного двумерного, трехмерного и четырехмерного симметричного твердого тела. В результате обнаружен ряд случаев интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021