Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Заседания Московского математического общества
15 декабря 2020 г. 19:20, г. Москва, онлайн, ссылка для подключения: shorturl.at/mxXZ9
 


Изопериметрические неравенства для собственных значений оператора Лапласа

М. А. Карпухин
Видеозаписи:
MP4 384.7 Mb

Количество просмотров:
Эта страница:264
Видеофайлы:69

М. А. Карпухин


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Собственные значения оператора Лапласа описывают многие физические явления, среди которых теплопроводность и распространение звука. По этой причине, уже в XIX веке физики активно интересовались оценками на эти собственные значения. В книге "Теория звука" Лорд Рэлей поставил следующую задачу: найти плоскую область фиксированной площади с минимальным первым собственным значением Дирихле. Эта задача является первым примером изопериметрического неравенства для собственных значений. В данном докладе мы обсудим более общую изопериметрическую задачу, в которой собственные значения рассматриваются как функционалы на пространстве метрик на фиксированной поверхности. Такая формулировка оказывается особенно интересной в связи со следующим наблюдением Н.Надирашвили: экстремальные метрики таких функционалов тесно связаны с фундаментальным геометрическим объектом — минимальными поверхностями. В докладе будет рассказано о недавних результатах в этой области, в том числе об оптимальных изопериметрических неравенствах для всех собственных значений на сфере и проективной плоскости.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021