Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
24 декабря 2009 г. 17:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Монодромные инварианты расслоений над проективными пространствами

Вик. С. Куликов
Видеозаписи:
Real Video 205.1 Mb
Windows Media 214.8 Mb
Flash Video 346.9 Mb
MP4 346.9 Mb

Количество просмотров:
Эта страница:463
Видеофайлы:211
Youtube Video:

Вик. С. Куликов
Фотогалерея



Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке



Аннотация: Одна из основных проблем геометрии – это проблема нахождения дискретных инвариантов, различающих геометрические объекты с точностью до некоторой эквивалентности. В алгебраической геометрии классический подход к решению данной проблемы, имеющий своими корнями идеи Римана, Гурвица, Лефшеца, состоит в представлении комплексных алгебраических многообразий либо в виде конечнолистных накрытий проективного пространства (общие накрытия), либо в виде расслоений на подмногообразия коразмерности один над проективной прямой (пучки Лефшеца). Монодромия, определяемая обходами вокруг множества критических значений таких отображений, полностью определяет эти многообразия (как бесконечно дифференцируемые многообразия) и позволяет надеяться, что связанные с ней инварианты полностью определяют эти многообразия с точностью до деформации комплексных структур на них. Недавно Дональдсон, Ору и Катцарков обобщили этот подход на случай четырехмерных симплектических многообразий для нахождения инвариантов симплектических структур на них.
В докладе описаны основные направления развития и результаты этого подхода к классификации алгебраических и симплектических многообразий.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021