RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Contemporary Problems in Number Theory
January 22, 2015 12:45, Moscow, Steklov Mathematical Institute, Room 530 (8 Gubkina)
 


Fully non-linear Diophantine approximation for a single linear form

Simon Kristensen

Number of views:
This page:139

Abstract: Suppose $L$ is a linear form in two variables with real coefficients. In classical Diophantine approximation, one would ask that the value of such a form when evaluated at an appropriate integer point is close to an integer. The non-linearity introduced in this setup is on the coefficients, and we will suppose that the coordinates of the integer vectors in the domain of the linear form $L$ are perfect powers with a prescribed exponent for each variable. Furthermore, we will suppose that the image is required to be close to a perfect power, again with a prescribed power. The problem is motivated from the study of certain partial differential equations with periodic boundary conditions. Under some conditions on the arithmetic and relative magnitude of the exponents, we obtain a full Khintchine-Groshev theorem for such linear forms. This is joint work with Mumtaz Hussain and Stephen Harrap.

Language: English

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017