RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Search
RSS
Forthcoming seminars





You may need the following programs to see the files








Seminar on analytic theory of differential equations
June 3, 2015 14:00, Moscow, Steklov Mathematical Institute, Room 440 (8 Gubkina)
 


Knot invariants and Oainleve equations


Number of views:
This page:68

Abstract: On the conference "Knots and Links in Fluid Flows" in IUM at one talk the following result was formulated. A HOMFLY invariant of a toric knot $(n,n+1)$ can be expressed through variables that describe a discrete dynamical system. Recurrent relations for these variables porvide that the generating function of these variables satisfy the Painlvev 2 equation.
I am going to tell about invariants of knots that come from four-dimensiona manifolds. Actually the invariants of manifolds can be organized into formal solutions of PDE. In particulat I'll explain how to a symplectic four-dimensional manifold there corresponds a solution of WDVV. And among reductions of these equations there are Painleve and Kdf equations

SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017