Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Steklov Mathematical Institute Seminar
September 16, 2010 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)

The structure of unital maps and the asymptotic quantum Birkhoff conjecture

Peter Shor
Video records:
Windows Media 448.2 Mb
Flash Video 750.2 Mb
MP4 750.2 Mb

Number of views:
This page:935
Video files:326
Youtube Video:

Peter Shor
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Birkhoff's theorem states that every doubly stochastic map is a convex combination of permutation matrices. The quantum analog of a stochastic map is a quantum channel, which is a completely positive trace preserving map taking Hermitian matrices to Hermitian matrices. One can ask whether Birkhoff's theorem generalizes to quantum channels. The quantum analog of a doubly stochastic map is a unital channel, i.e. a channel which maps the identity matrix to the identity matrix. The natural generalization of Birkhoff's theorem to quantum channels would be the statement that every unital channel is a convex combination of unitaries. This is false. The weaker “asymptotic Birkhoff conjecture” is that as $n\to\infty$, the tensor product of $n$ copies of a quantum channel is approximated well by a convex combination of unitaries. We show that this is also false, and give a classification of unital maps related to this conjecture.

Language: English

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018